Factors influencing Spatial Thinking capabilities in a Geoscience classroom

Kundu, Sandeep Narayan, Oliver, Grahame, Cao, Kai
Contents

- Geoscience Teaching @ NUS
- Spatial Thinking
 - Geoscience & Spatial Thinking
 - Measuring Spatial Thinking
- What influences Spatial Thinking?
 - Past Experiments
 - Current Analysis & Results
- Pedagogic Implications
Geoscience @ NUS

- Geoscience is taught within the department of Geography
 - Minor Programs
 - Geoscience
 - Petroleum Exploration
 - The modules are offered NUS-wide
 - Arts
 - Science
 - Engineering
- Future scope
 - NUS – proposed Masters in Petroleum Engineering
 - Geoscience skills are in demand by Govt. & Industry
What is Spatial Thinking?

- **Spatial thinking** is thinking that finds meaning in the *shape*, *size*, *orientation*, *location*, *direction* or *trajectory*, of *objects*, *processes* or *phenomena*.

- **Spatial thinking** uses *space* and *orientation* as a vehicle for structuring problems, for finding answers, and for expressing solutions.

Spatial Thinking & Geoscience?

- 3D visualization from 2D
Spatial Thinking & Geoscience?

- **Field Observations to 3D processes**

- Anticline
- Syncline
Spatial Thinking & Geoscience?

- Maps & Cross-sections

Dome

Anticline

www.gg.uwyo.edu
Measuring Spatial Thinking skills

- **Aptitude tests (measuring IQ)**
 - Numerical Reasoning
 - Verbal Ability
 - Non-Verbal ability

\[
\frac{30}{35} \text{ can be reduced to:} \quad \frac{6}{7} = \frac{13}{15}
\]

Ben is rich but Jim is richer. Mike is poorer than Jim.

Who is richest?
Measuring Spatial Thinking skills

- Spatial Relations Test

- Spatial Orientation Test
What influences Spatial Thinking

- Baldwin & Wallace (2002) Experiment
 - High School
 - HSE & HSC (*Geography computing & mapping courses*)
 - Geoscience Modules
 - Geos 218 (Geologic Disasters) & Geos 212 (Oceanography)
 - Geos 251 (Physical Geology) & Geos 256 (Computing Geoscience)
 - 2 similar test (one before the course and one after)
 - 2 sections in each test (*Spatial Relations & Spatial Orientation*)
Geoscience & Spatial Thinking

- **Simple participation** in a Geoscience module improves spatial thinking.

Gender & Spatial Thinking

- Males fare **better** than female counterparts

Majoring Discipline & Spatial Thinking

- **Science** majors perform *better* than their *non-science* counterparts.

Present Experiment

- Objectives of our experiment at Geography
 - Can we vindicate Baldwin-Wallace (2002)
 - Do they apply Today & for the NUS context?
 - Can we detect variations in inputs which can be considered to develop teaching methods
 - Categorize students participating in the module into different spatial thinking skills?
Methodology

- **Use information from IVLE**
 - Gender
 - Majoring Discipline
 - Prior Geospatial Exposure

- **Indirect spatial skills assessment**

 - Performance in spatially challenging questions during the module’s CA and tests.
Results

- Male students fare better than their female counterparts
- Students majoring in a scientific discipline fare better
- Students with high – prior geospatial exposure fare better
Pedagogic Implications

Inputs

- Wide variance in spatial skills

Classroom Environment

- Traditional teaching strategies

Outcomes

- Disparate outcomes
- Teaching Strategies aimed at bridging skill gap
- Consistent outcomes

Adapted from Astin 1984
Pedagogic Implications

- Pre-classify students enrolled from a geoscience program into spatial skill groups based on IVLE information
 - Gender
 - Prior Geospatial exposure
 - Majoring discipline

- Approach different skills groups with methods aimed at bridging spatial thinking skill gap
 - Tutorial and exercises that challenge spatial thinking
 - Field based methods of teaching
 - Virtual tools (animations, 3D graphics) for explaining geoscience objects, processes and phenomena
Thanks